1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Xorshift generators

use core::num::Wrapping as w;
use core::{fmt, slice};
use {Rng, SeedableRng, Error};
use {impls, le};

/// An Xorshift[1] random number
/// generator.
///
/// The Xorshift algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng` or `OsRng`.
///
/// [1]: Marsaglia, George (July 2003). ["Xorshift
/// RNGs"](https://www.jstatsoft.org/v08/i14/paper). *Journal of
/// Statistical Software*. Vol. 8 (Issue 14).
#[derive(Clone)]
#[cfg_attr(feature="serde-1", derive(Serialize,Deserialize))]
pub struct XorShiftRng {
    x: w<u32>,
    y: w<u32>,
    z: w<u32>,
    w: w<u32>,
}

// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for XorShiftRng {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "XorShiftRng {{}}")
    }
}

impl XorShiftRng {
    /// Creates a new XorShiftRng instance which is not seeded.
    ///
    /// The initial values of this RNG are constants, so all generators created
    /// by this function will yield the same stream of random numbers. It is
    /// highly recommended that this is created through `SeedableRng` instead of
    /// this function
    pub fn new_unseeded() -> XorShiftRng {
        XorShiftRng {
            x: w(0x193a6754),
            y: w(0xa8a7d469),
            z: w(0x97830e05),
            w: w(0x113ba7bb),
        }
    }
}

impl Rng for XorShiftRng {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        let x = self.x;
        let t = x ^ (x << 11);
        self.x = self.y;
        self.y = self.z;
        self.z = self.w;
        let w_ = self.w;
        self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8));
        self.w.0
    }

    fn next_u64(&mut self) -> u64 {
        impls::next_u64_via_u32(self)
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        impls::fill_bytes_via_u32(self, dest)
    }
}

impl SeedableRng for XorShiftRng {
    type Seed = [u8; 16];

    fn from_seed(seed: Self::Seed) -> Self {
        let mut seed_u32 = [0u32; 4];
        le::read_u32_into(&seed, &mut seed_u32);

        // Xorshift cannot be seeded with 0 and we cannot return an Error, but
        // also do not wish to panic (because a random seed can legitimately be
        // 0); our only option is therefore to use a preset value.
        if seed_u32.iter().all(|&x| x == 0) {
            seed_u32 = [0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED];
        }

        XorShiftRng {
            x: w(seed_u32[0]),
            y: w(seed_u32[1]),
            z: w(seed_u32[2]),
            w: w(seed_u32[3]),
        }
    }

    fn from_rng<R: Rng>(mut rng: R) -> Result<Self, Error> {
        let mut seed_u32 = [0u32; 4];
        loop {
            unsafe {
                let ptr = seed_u32.as_mut_ptr() as *mut u8;

                let slice = slice::from_raw_parts_mut(ptr, 4 * 4);
                rng.try_fill_bytes(slice)?;
            }
            if !seed_u32.iter().all(|&x| x == 0) { break; }
        }

        Ok(XorShiftRng {
            x: w(seed_u32[0]),
            y: w(seed_u32[1]),
            z: w(seed_u32[2]),
            w: w(seed_u32[3]),
        })
    }
}

#[cfg(test)]
mod tests {
    #[cfg(feature="serde-1")]
    use {Rng, SeedableRng};

    #[cfg(feature="serde-1")]
    #[test]
    fn test_serde() {
        use super::XorShiftRng;
        use thread_rng;
        use bincode;
        use std::io::{BufWriter, BufReader};

        let seed: [u32; 4] = thread_rng().gen();
        let mut rng: XorShiftRng = SeedableRng::from_seed(seed);

        let buf: Vec<u8> = Vec::new();
        let mut buf = BufWriter::new(buf);
        bincode::serialize_into(&mut buf, &rng, bincode::Infinite).expect("Could not serialize");

        let buf = buf.into_inner().unwrap();
        let mut read = BufReader::new(&buf[..]);
        let mut deserialized: XorShiftRng = bincode::deserialize_from(&mut read, bincode::Infinite).expect("Could not deserialize");

        assert_eq!(rng.x, deserialized.x);
        assert_eq!(rng.y, deserialized.y);
        assert_eq!(rng.z, deserialized.z);
        assert_eq!(rng.w, deserialized.w);

        for _ in 0..16 {
            assert_eq!(rng.next_u64(), deserialized.next_u64());
        }
    }
}